A NEW SYNTHETIC METHOD OF α -AMINO ACIDS FROM α -METHOXYURETHANES¹

* Tatsuya Shono, Yoshihiro Matsumura, and Kenji Tsubata Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606, Japan

Reaction of a-methoxyurethanes with phenylisocyanide gave the corresponding amides of α -amino acid in reasonable yields.

As a part of our continuing study² on the synthetic application of α -methoxyurethanes (2) being easily obtainable by the anodic oxidation of urethanes (1) in methanol.³ we have found that in the presence of a Lewis acid catalyst, phenylisocyanide reacts with 2 to afford α -amino acid derivatives 3 (Scheme 1). A recent communication⁴ describing the synthesis of α -amino cyanides from α -methoxyamides and trimethylsilylcyanide prompted us to report our results.

The synthesis of valine is shown below as a typical example. To a stirred solution of titanium tetrachloride (5 mmol) in methylene chloride (10 ml) was added a solution of 2 ($R^1 = H$, $R^2 = i-Pr$) (5 mmol) in methylene chloride (3 ml) at - 70 °C. After the reaction mixture was stirred for 5 minutes, phenylisocyanide (6.8 mmol) was added, and the reaction was completed after the reaction mixture was allowed to stand for 3 hr at - 70 °C. Then, diluted hydrochloric acid was added into the reaction mixture and the organic layer was extracted with methylene chloride. Isolation of 3 ($R^2 = H$, $R^2 = i-Pr$) was achieved by column chromatography (82% yield). The conversion of 3 to 4 was accomplished as follows. Hydrolysis of 3 $(R^1 = H,$ $R^2 = i-Pr$) by refluxing it in 47% hydrobromic acid for 4 hr afforded d , *l*-valine in a 63% yield. Other results are summarized in Table I.⁵

Since a variety of α -methoxyurethanes can easily be synthesized by the anodic oxidation of urethanes, the synthesis of other essential amino acids is achievable by this method.

Run	\mathbf{z}	Yield of 2 $(\%)$	3	Yield of 3 $(%)$
$1. \,$	NHCO ₂ CH ₃ OCH ₃	50	NHCO2CH ₃ CONHPh	64
2.	NHCO ₂ CH ₃ OCH ₃	70	NHCO ₂ CH ₃ CONHPh	82 ^a
3.	NHCO2CH ₃ OCH ₃	77	MHCO2CH ₃ CONHPh	$72^{\rm b}$
4.	NCO ₂ CH ₃ $\rm \dot OCH_3$	75	NCO ₂ CH ₃ CONHPh	49
5.	N-CO2CH3 OCH ₃	80	N - CO_2CH_3 CONHPh	64
6.	N - CO_2CH_3 OCH,	86	N - CO_2CH_3 CONHPh	73
7.	. N-CO ₂ CH ₃ OCH ₃	69	N - CO_2CH_3 CONHPh	50
$\bf 8$.	N-CO2CH3 OCH ₃	55	N-CO ₂ CH ₃ CONHPh	48
9.	$_{\rm H}^{\rm N}$ OCH3	89	0- $_{\rm H}^{\rm N}$ CONHPh	34
10.	NHCO2CH ₃ COC OCH ₃	39	NHCO2CH3 $_{\rm COO}$ CONHPh	49

Table I. Reaction of α -Methoxyurethanes with Phenylisocyanide.

a) Hydrolysis gave valine in a 63% yield. b) Leucine was obtained by hydrolysis in a 62% yield.

References and Notes

- 1. Electroorganic Chemistry. 52.
- 2. T. Shono, Y. Matsumura, and K. Tsubata, J. Am. Chem. $Soc.$, in press.
- 3. T. Shono, Y. Matsumura, and H. Hamaguchi, J. Am. Chem. Soc., **97,** 4264 (1975).
- 4. V. Asher, C. BeCu, M. J. O. Anteunis, and R. Callens, *Tetrahedron Lett.*, **22**, 141 (1981). The α -cyanation with trimethylsilylcyanide was also applicable to 2 as shown below.

 $\bigodot_{OCH_3}^{\mathcal{N}}$ -CO₂CH₃ + (CH₃)₃SiCN TiCl₄, CH₂Cl₂, 92% $\bigodot_{CN}^{\mathcal{N}}$ -CO₂CH TiCl., CH₂Cl₂, 92% $^{\circ}$ OCH₃ CN

5. Spectroscopic data and elemental analyses of all the products coincided with assigned structures.

(Received in Japan 26 March 1981)